- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0006000000000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Coskunuzer, B. (5)
-
Chen, Y. (4)
-
Gel, Y.R. (4)
-
Akcora, C. (1)
-
Akcora, CG (1)
-
Coskunuzer, B (1)
-
Demir, A (1)
-
Gel, Y. R. (1)
-
Huang, S (1)
-
Kantarcioglu, M. (1)
-
Kiziltan, B. (1)
-
Ngo, B (1)
-
Poursafaei, F (1)
-
Segovia Dominguez, I.J. (1)
-
Segovia-Dominguez, I. (1)
-
Shamsi, K (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many real-world networks evolve over time, and predicting the evolution of such networks remains a challenging task. Graph Neural Networks (GNNs) have shown empirical success for learning on static graphs, but they lack the ability to effectively learn from nodes and edges with different timestamps. Consequently, the prediction of future properties in temporal graphs remains a relatively under-explored area. In this paper, we aim to bridge this gap by introducing a principled framework, named GraphPulse. The framework combines two important techniques for the analysis of temporal graphs within a Newtonian framework. First, we employ the Mapper method, a key tool in topological data analysis, to extract essential clustering information from graph nodes. Next, we harness the sequential modeling capabilities of Recurrent Neural Networks (RNNs) for temporal reasoning regarding the graph's evolution. Through extensive experimentation, we demonstrate that our model enhances the ROC-AUC metric by 10.2% in comparison to the top-performing state-of-the-art method across various temporal networks. We provide the implementation of GraphPulse at https://github.com/kiarashamsi/GraphPulse.more » « less
-
Akcora, C.; Kantarcioglu, M.; Gel, Y.R.; Coskunuzer, B. (, NeurIPS)
-
Demir, A; Coskunuzer, B.; Gel, Y. R.; Segovia-Dominguez, I.; Chen, Y.; Kiziltan, B. (, NeurIPS)
-
Chen, Y.; Segovia Dominguez, I.J.; Coskunuzer, B.; Gel, Y.R. (, The International Conference on Learning Representations (ICLR))
-
Chen, Y.; Coskunuzer, B.; Gel, Y.R. (, Advances in neural information processing systems)
-
Chen, Y.; Coskunuzer, B.; Gel, Y.R. (, Advances in neural information processing systems)
An official website of the United States government

Full Text Available